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Abstract
I investigate the properties of forces on bodies in theories governed by the
generalized Poisson equation �∇ · [µ(| �∇ϕ|/a0) �∇ϕ] ∝ Gρ, for the potential ϕ
produced by a distribution of sources ρ. This equation describes, inter alia,
media with a response coefficient, µ, that depends on the field strength, such
as in nonlinear, dielectric or diamagnetic, media; nonlinear transport problems
with field-strength-dependent conductivity or diffusion coefficient; nonlinear
electrostatics, as in the Born–Infeld theory; certain stationary potential flows
in compressible fluids, in which case the forces act on sources or obstacles in
the flow. The expressions for the force on a point charge are derived exactly
for the limits of very low and very high charge. The force on an arbitrary body
in an external field of asymptotically constant gradient, −g0, is shown to be
F = Qg0, where Q is the total effective charge of the body. The corollary
Q = 0 ⇒ F = 0 is a generalization of d’Alembert’s paradox. I show that for
G > 0 (as in Newtonian gravity) two point charges of the same (opposite) sign
still attract (repel). The opposite is true for G < 0. I discuss its generalization
to extended bodies and derive virial relations.

PACS numbers: 05.45.−a, 46.65.+g, 02.30.Jr, 03.50.De, 41.20.−q

1. Introduction

The Poisson equation, which governs so many physical processes, has the nonlinear
generalization

�∇ · [µ(| �∇ϕ|/a0) �∇ϕ] = αDGρ (1.1)

by which the source distribution ρ(r), in D-dimensional Euclidean space, gives rise to a
potential field ϕ. Here, a0 is a constant with the dimensions �∇ϕ, αD = 2(π)D/2/�(D/2),
which is the D-dimensional complete solid angle, introduced here for convenience, and G is a
coupling constant. As I will show, for G > 0, a point, test charge is attracted to a (finite) point
charge of the same sign (as in gravity), whereas for G < 0 it is repelled.
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Equation (1.1) describes a variety of physical problems; some examples are:

(i) Nonlinear dielectric, and diamagnetic, media; µ is then the dielectric or diamagnetic
coefficient, which depends on the field strength (here G < 0).

(ii) Problems of nonlinear electric current flows in systems with field-dependent conductivity
(nonlinear current–voltage relation), and nonlinear diffusion problems; µ(w) is the
transport coefficient.

(iii) Stationary, subsonic, potential flow problems of non-viscous fluids with a barotropic
equation of state p = p(�) (p is the pressure, � the density). The stationary Euler
equation is integrated into Bernoulli’s equation f (�) = − 1

2u
2 + const, where f ′(�) =

�−1p′(�) = c2(�)/�, with c the speed of sound; f thus increases with �, and
� is a function of |u| = | �∇ϕ|. The stationary continuity equation then gives
�∇ · [�(| �∇ϕ|) �∇ϕ] = s(r), with s the source density (see e.g. [5] for the ideal-gas
case). This is equation (1.1) with µ = � and G = α−1

D > 0. For example, in
a fluid with an equation of state of the form p = a�γ (a > 0, γ � 1), we have
�(u) = �(0)

[
1 − (u/u0)

2
]1/(γ−1)

, with u2
0 ≡ 2c2

0/(γ − 1), and c0 is the speed of sound
at u = 0. Subsonicity requires (u/u0)

2 < (γ − 1)/(γ + 1).
If we, formally, consider a stationary flow problem in a medium with negative
compressibility, c2 < 0, ellipticity is maintained for any value of �∇ϕ. For example,
for a medium with a constant c2 < 0, �(u) = �(0)exp(u2/2|c|2).

(iv) Nonlinear (vacuum) electrostatics as formulated, e.g. in the Born–Infeld nonlinear
electromagnetism, which also appears in effective Lagrangians resulting from string
theory (see review and references in [1, 2]). In the original, electrostatic Born–Infeld
theory µ(w) ∝ (1 − w2)−1/2, and G < 0.

(v) A formulation of an alternative nonrelativistic gravity to replace the dark-matter
hypothesis in galactic systems [3]. Here µ(w) ≈ w for w � 1, and µ ≈ 1 for
w  1 (G > 0).

(vi) Equation (1.1) was used in [4] as an effective-action approximation to Abelianized QCD.
(vii) Area (volume) minimization problems, such as the determination of the shape of

a soap film with a dictated boundary (see, e.g., [5]): If xD+1 = ϕ(x1, . . . , xD)

describes a D-dimensional hypersurface embedded in (D + 1)-dimensional Euclidean
space with Cartesian coordinates x1, . . . , xD+1, the volume element on the surface is
dv = [1+( �∇ϕ)2]1/2 dDr . Then, equation (1.1) describes the problem of the minimization
of the volume of the surface. The sources may describe a force density on the hypersurface
acting in the direction xD+1. In this problem µ(w) ∝ (1 + w2)−1/2, and G > 0. Born–
Infeld electrostatics is the same as the area-extremization problem for a time surface
embedded in Minkowski space-time.

Much has been said in the mathematical literature on the properties of the potentials that
solve equation (1.1) (see, e.g., [5]). However, to my knowledge, very little has been said about
forces on bodies in such theories. The forces can be written as certain integrals of ϕ, and are
of obvious relevance in the physics context.

Many of the familiar and intuitive properties of the linear theory are lost in the nonlinear
case because the potential, and forces, are not the sum of the contributions of the subsystems.
For example, the force on a point charge is no longer proportional to the charge, it does not
reverse direction when the charge of the body reverses sign, etc. And Earnshaw’s theorem
[6] no longer holds. Under some circumstances it is possible to suspend stably static charged
bodies in a static field. This last aspect is treated in detail in [7].

The choice µ(w) = wD−2 is special in that the theory is then conformally invariant, and
lends itself to many analytical developments. This case is described in detail in [8].
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After discussing some general aspects of equation (1.1) in section 2, I take up the main
subject concerning the properties of forces on bodies in nonlinear theories: general properties
in sections 3, and forces on point charges in section 4. I conclude in section 5 with some
examples of applications.

2. General properties

2.1. Preliminaries

The field equation (1.1) is derivable from the action functional

S = Si + Sf ≡ −
∫
V

ρϕ dDr − a2
0

2αDG

∫
V

F
[
( �∇ϕ)2

/
a2

0

]
dDr. (2.1)

The function µ(w) in equation (1.1) is given by

µ(w) = dF(y)

dy
y = w2. (2.2)

For equilibrium problems, such as (i), (iv), (v) and (vii) above, the quantity E ≡ −S

may be identified with the energy of a charge configuration ρ when S is finite. I shall only be
interested in differences in the energy between configurations with the same total charge, and
this is finite, in general, even if the expression for E diverges. In the case of non-equilibrium,
stationary transport problems, such as nonlinear diffusion, heat transfer, etc, E is not an energy
but is related to the entropy-generation rate.

For convenience, the free, additive constant in F is chosen such that F(0) = 0. This
makes the field-action density vanish at r → ∞ when �∇ϕ → 0, and improves convergence.
I exclude from discussion theories for which F diverges at zero argument. I also assume
µ(w) > 0 except, possibly, at w = 0 where µ may vanish. Thus F(y) is an increasing
function and is positive for y > 0. (I assume that F ′(y) does not vanish for y > 0; it then has
a uniform sign which can always be taken as positive by adjusting the sign of G.)

In the area-minimization case F(y) = (1 + y)1/2 − 1. In the flow problem F(y) is

essentially the equation of state since the pressure is given byp = p(u = 0)− u2
0

2 F
[
u2(�)/u2

0

]
,

with the additive constant chosen so that F(0) = 0 [p � p(0)].
All that I say below is generalized in a straightforward manner to the case where F , and

thus µ, depend explicitly on r. For instance, in the flow problem this happens when the fluid
is coupled to some potential field ψ via �(r)ψ(r) for which the Bernoulli equation becomes
f (�) = − 1

2u
2 − ψ(r) + const.. To avoid encumbrance I assume all along, unless otherwise

stated, that there is no such explicit r dependence.
When the charges are not held fixed but move under the influence of the ϕ field, and their

dynamics is of interest, we add to the action the kinetic term for the charges

Sp = 1

2

∫
dDr�mv

2(r) (2.3)

where �m is the mass density of the particles contributing ρ to the charge density. Extremizing
S + Sp with respect to particle coordinates gives the usual Euler equation �mv̇ = −ρ �∇ϕ.

The solution of equation (1.1) is unique inside a volume V when one dictates on its
boundary the value of ϕ or that of µ(| �∇ϕ|/a0)∂nϕ (or a combination thereof) (∂nϕ is the
normal component of ϕ) provided the function ν(w) ≡ wµ(w) is an increasing function
(see e.g. [9] for a proof). This monotonicity of ν(w)—which I shall assume all along—is
tantamount to µ̂ ≡ d lnµ(w)/d lnw > −1. This is also the condition for the ellipticity of
the field equation (2.11). In the case of a stationary flow we have µ̂ = −u2/c2; the ellipticity
condition is then equivalent to the subsonicity of the flow.
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I now show that from the ellipticity condition and the choice F(0) = 0 follows that the
logarithmic derivative of F , F̂(y) ≡ yF ′(y)/F(y), satisfies F̂(y) > 1/2 for all y > 0 for
which ellipticity obtains. I use this inequality repeatedly in what follows. Define

χ(w) ≡ F(w2)[2F̂(w2) − 1] = 2µ(w)w2 − F(w2) (2.4)

(where y = w2). First note that χ ′(w) = 2wµ(1 + µ̂), so χ ′ > 0 for w > 0. Since χ(0) = 0,
χ(w) > 0 for w > 0. Thus F̂(y) > 1/2 for all y > 0 [as F(y) > 0 for y > 0]. (The condition
F(0) = 0, on which the derivation of F̂ > 1/2 depends, does indeed enter in the cases where
this inequality is used below.)

It is useful to write our theory for a general curved space whose metric is gij (gij its
inverse, and g = |det(gij )|). The covariant form of the action is then

S = −
∫
V

g1/2ρ∗ϕ dDr − a2
0

2αDG

∫
V

g1/2F [(
ϕ,

iϕ,i

) /
a2

0

]
dDr (2.5)

with ϕ,
i = gijϕ,j (ϕ,i ≡ ∂ϕ/∂xi), and ρ∗ ≡ g−1/2ρ is a scalar under general coordinate

transformations. Repeated indices are summed over. The covariant form of the field equation
is [

µ
(
ϕ,

iϕ,i

/
a2

0

)
ϕ,

k
]

;k = αDGρ
∗ (2.6)

where a semicolon signifies a covariant derivative. The covariant divergence appearing
in equation (2.6) is given in terms of the normal divergence of a vector vk as vk ;k =
g−1/2(g1/2vk),k. So, using usual derivatives instead we have[

g1/2µ
(
ϕ,

iϕ,i

/
a2

0

)
ϕ,

k
]
,k = αDGρ. (2.7)

From the covariant action we can derive the field stress tensor (the energy–momentum
tensor when working in Lorentzian space–time). This is the functional derivative of the field
action with respect to the metric: under a variation δgij

δSf = 1

2

∫
g1/2δgijPij dDr. (2.8)

In the Euclidean case, on which I concentrate hereafter, we find

P↔ = − a2
0

2αDG
(F − 2µ �∇ϕ ⊗ �∇ϕ) = − a2

0

2αDG
F(1 − 2F̂e ⊗ e) (2.9)

where e ≡ �∇ϕ/| �∇ϕ| is a unit vector along �∇ϕ. The trace of P↔ is −(
a2

0/2αDG
)F(D − 2F̂).

The field direction e is an eigenvector of P↔ with eigenvalue −(
a2

0/2αDG
)F(1 − 2F̂). The

inequality F̂ > 1/2 implies that this eigenvalue is always positive: there is always tension
along the field lines. All other eigenvalues are equal and negative.

For solutions of the field equation the divergence of Pij , which measures the rate of
change of the momentum density, is given by

�∇ · P↔ = ρ �∇ϕ. (2.10)

This conservation law can be derived directly from the Euclidean action (2.1) and follows from
its translation invariance: under infinitesimal translations r → r+a, ϕ(r) → ϕ(r)+(a · �∇)ϕ,
etc S → S + a · ( �∇ · P↔ − ρ �∇ϕ).

The field equation can also be written as

µAijϕ,i ,j = αDGρ (2.11)

where

A↔ = (1 + µ̂e ⊗ e) (2.12)
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with µ̂ the logarithmic derivative of µ, and e ⊗ e is the matrix whose (i, j) element is eiej

(all dependent on �∇ϕ). Since µ̂ > −1 A↔
is positive definite. If µ(0) = 0, points where

�∇ϕ = 0 need special treatment which I do not go into here.
If we make a small change δρ in ρ, the field equation can be linearized in the small change

ζ in ϕ to read [9]

�∇ · [µA↔· �∇ζ ] = αDGδρ (2.13)

This is the same as the equation for the electrostatic potential produced by the density δρ in a
linear dielectric medium with a position-dependent, anisotropic dielectric constant µA↔

.
A variation of ϕ in the volume V gives rise to a variation in S

δS = 1

αDG

∫
V

δϕ{ �∇ · [µ(| �∇ϕ|/a0) �∇ϕ] − αDGρ} dDr − 1

αDG

∫
.

µδϕ �∇ϕ · ds (2.14)

where . is the boundary of V . For potentials that solve the field equation, and hence nullify
the first term in equation (2.14), we have

δS = − 1

αDG

∫
.

µ δϕ �∇ϕ · ds. (2.15)

We can obtain useful integral constraints on such solutions—such as conservation laws and
virial relations—by considering specific variations that do not nullify the surface term. Some
examples are given in appendix A.

The second-order change in the action (energy) is

δ2E = −δ2S = 1

2αDG

∫
V

µ �∇δϕ · A↔· �∇δϕ dDr. (2.16)

The ellipticity condition makes the integral positive (when �∇ϕ �≡ 0), and thus a solution of
the field equation is a minimum of the energy for G > 0, and a maximum for G < 0.

Using the integral relation (A.1) derived in appendix A, which holds for solutions of the
field equation, to eliminate the explicit dependence of E on the sources we get

E = −S = − a2
0

2αDG

∫
V

F
[
( �∇ϕ)2

/
a2

0

]
(2F̂ − 1) dDr. (2.17)

So, in light of the above inequality for F̂ , E is positive for G < 0 (as in electrostatics).
The field equation enjoys a certain scaling property [9] in that if ϕ(r) and ρ(r) are a

consistent pair then so are

ϕλ(r) = λϕ(λ−1r) ρλ(r) = λ−1ρ(λ−1r) (2.18)

with appropriately scaled boundary conditions. Charges then scale as qλ = λD−1q .

2.2. Asymptotic behaviour of the potential

When the medium can be considered infinite, a common choice of boundary condition,
describing an isolated system, is �∇ϕ → 0 at infinity. In fact, if the potential can be assumed to
become spherical at infinity, this boundary requirement sometimes follows from the potential
equation itself through Gauss’s theorem. The behaviour of µ(w) near w = 0 is then relevant.
For concreteness, I assume in the rest of the paper that F , and thus µ, approach a power of the
argument near 0.

µ(w) → wβ0 F(y) → 2

2 + β0
y(2+β0)/2 (β0 > −1). (2.19)
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If the sources ρ are contained within a finite volume, and the total charge, Q, does not
vanish, the field becomes radial at infinity, and, applying Gauss’s theorem to the field equation
for a sphere of a large radius r, we find asymptotically

�∇ϕ ≈ s(QG)|Ĝ|γ0 |Q|γ0r−γ0(D−1)n. (2.20)

Here Ĝ ≡ Ga
β0
0 , γ0 ≡ 1/(1 + β0), s(a) = sign(a), and n ≡ r/|r|.

The value β0 = D − 2 is limiting. For higher values of β0, ϕ diverges like a power of r
at large r (when Q �= 0) with �∇ϕ still vanishing there. For the limiting case, ϕ is logarithmic
at infinity and �∇ϕ ∝ rr−2. In this case the action is infinite when calculated for the whole
space. The revised theory of Newtonian gravity discussed in [3] is of this limiting-power type,
and so is the class of conformally invariant theories with µ̂ = D − 2 discussed in [8]. In what
follows I assume β0 � D− 2 unless otherwise stated (as in the discussion of one-dimensional
systems).

For Q = 0 I do not have a general expression for the asymptotic behaviour of the field.
Because of the nonlinearity, multipoles are no longer very relevant. For β0 = D − 2 the
asymptotic form can be obtained as follows. In the exact-power-law theory with β = D − 2
one can use the conformal invariance. Take the origin at a point outside charges and make
a conformal transformation r → a2r/r2, where a is the radius of the reflection sphere. If
ϕ(r) is the solution of the original problem then ϕ̂(r) ≡ ϕ(a2r/r2) is the solution of the
new problem with the transformed charge distribution ρ̂(r) = (a/r)2Dρ(a2r/r2), which also
has a vanishing total charge (see [8] for more details). So the asymptotic behaviour of ϕ is
obtained from the behaviour of ϕ̂ at the origin (where the charge density is 0). I assume that
ϕ̂ is analytic there, so its dominant behaviour is, generically, ϕ̂ ≈ a−2K · r, where K is some
constant vector. This provides the generic, asymptotic behaviour of ϕ

ϕ ≈ K · r/r2. (2.21)

K might be viewed as the asymptotic-behaviour dipole, but it is not proportional to the dipole
of the charge distribution. If K = 0, the asymptotic behaviour is, more generally, of the form

ϕ ≈ Ki1···in ri1 · · · rin
/
r2n (2.22)

where a−2nKi1···in , a totally symmetric constant tensor, is the first non-vanishing Taylor
coefficient in the expansion of ϕ̂ at the origin. (I am discussing only the leading behaviour,
not the expansion terms. Because of nonlinearity the higher order behaviour depends on the
leading behaviour.) Basically, I use conformal invariance to argue that ϕ has to be analytic in
r/r2 at infinity, and hence to greatly constrain its form there. The Ks have further to satisfy
algebraic relations insuring that expression (2.22) satisfies the vacuum field equation. For
n = 1 there are no extra relations on K . For n = 2 the algebraic relation in the linear (D = 2)
case is the usual tracelessness requirement

∑
i Kii = 0. For D > 2 the condition on the matrix

K, the elements of which are Kij , is (rKr)(D−4)/2r[(D − 2)K3 + Trace(K)K2]r = 0 for all
vectors r. This, for symmetric K, can be shown to imply K = 0, so there is no dominant n = 2
behaviour for D > 2. Now consider a general theory with β0 = D − 2. Let ϕ be the solution
for a confined charge distribution with vanishing total charge. Define

ρ∗ ≡ (αDG)−1 �∇ · [µ̄(| �∇ϕ|/a0) �∇ϕ] (2.23)

where µ̄ is the exact D − 2 power. Because asymptotically (where �∇ϕ → 0) we have µ → µ̄,
we get from Gauss’s theorem that ρ∗ also has a vanishing total charge. And, if µ approaches
its power-law behaviour fast enough, ρ∗ will be well bounded. But from equation (2.23) ϕ is
a solution for ρ∗ in the theory with the exact power-law µ̄ and so, from the arguments above,
must also have the asymptotic form (2.21), (2.22).
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Outside a spherical distribution of zero total charge the field vanishes for all theories.
Also of interest is the boundary condition �∇ϕ → −g0 for r → ∞ (g0 is a constant vector).

It pertains, for example, to a system of charges in an external electric field, to magnetized
or superconducting bodies in an external magnetic field, or to obstacles and sources in an
asymptotically uniform flow. For the asymptotic field use equation (2.13) to linearize in
�∇ζ ≡ �∇ϕ + g0

�∇ · [ �∇ζ + µ̂e0(e0 · �∇ζ )] = 0 (2.24)

and solve with �∇ζ → 0 at infinity (e0 ≡ g0/|g0|). Taking e0 to be the x1-direction
we see that, asymptotically, ζ satisfies the Laplace equation in the coordinates r′ ≡[
(1 + µ̂)−1/2x1, x2, . . . , xD

]
. Thus, ζ has the standard multipolar asymptotic expansion in

r′. When the total charge, Q, is finite the dominant behaviour is ζ ∝ Q/r ′D−2 (D > 2).

3. Forces on bodies

A body is an isolated region, v, where the field is externally disturbed in one way or another.
For example, a body may be defined by some rigid distribution of charges in v, or by dictating
the potential or its gradient on the boundary of v. The body may also be defined as a
‘µ inclusion’: dictating in v a µ(w) that is different from the ambient one. Examples of bodies
defined by boundary conditions are: a rigid body in the flow problem and a superconducting
body in a magnetic field, for both of which the normal component of �∇ϕ vanishes at the
surface; a conducting (equipotential) surface in an electric field; and a restricting boundary
in the volume-minimization problem, for which the potential is dictated. Examples of bodies
defined by µ inclusions are a dielectric inclusion, or, in the flow problem, a region of space
where a fluid is subject to an external potential ψ(r) that couples to fluid density. There is
then an extra term, ψ(r), in the Bernoulli equation, and �(u2) is then a function of r in v

through ψ .
Consider then a background having some ambient, position-independent µ. Within this

background are embedded disjoint bodies of different types as defined above. Once one gets
the solution, ϕ, for the system one can replace the bodies by effective charge distributions that
give the same potential field outside the bodies. The effective charge density is simply

ρ∗(r) ≡ (αDG)−1 �∇ · [µ(| �∇ϕ|/a0) �∇ϕ] (3.1)

with the ambient µ used everywhere. If a body is defined by boundary conditions we continue
the solution inside the body by solving the field equation with the ambient µ and imposing
the same boundary conditions for the internal solution. Obviously, the effective charges given
in this way appear as an extra charge only on the bodies because, by the field equation, the
right-hand side of expression (3.1) gives the true charges outside the bodies. For example, a
body that is defined by dictating ϕ on its surface is replaced by a ρ∗ that constitutes a surface
charge; a body defined by dictating µ∂nϕ on the surface is replaced by a surface dipole layer
(whose total charge obviously vanishes). A body defined by a µ inclusion is replaced by an
effective charge distribution whose total effective charge is the same as the actual charge on
the body. This is because Gauss’s theorem, applied to equation (3.1), gives the total effective
charge as a surface integral over µ �∇ϕ on a surface surrounding the body, but, from the field
equation, this also equals the actual total charge of the body. So the total effective charge of a
µ inclusion always vanishes if there are no actual sources within it.

The force on a body can be defined in several equivalent ways. For example, it may
be taken as the gradient of the total energy under translation of the body. First replace all
bodies in the system with their effective charges. Then translate the body in question, rigidly
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and infinitesimally, by δa, keeping all the other charges (including effective ones) fixed. For
the energy increment δE = −δa · F v , we identify F v as the force on the body. Under the
translation, the effective charge distribution, ρ, changes by δρ∗ = −δa · �∇ρ∗ in v, and δρ∗ = 0
outside. Since ϕ is an extremum of S, the change in E (= −S) can be calculated as if only ρ∗

has changed (δϕ = 0 at infinity). Thus

δa · F v = −δE = −
∫
v

ϕδρ∗ dDr = δa ·
∫
v

�∇ρ∗ϕ dDr = −δa ·
∫
v

ρ∗ �∇ϕ dDr (3.2)

where the last equality is obtained by integrating by parts. Thus

F v = −
∫
v

ρ∗ �∇ϕ dDr =
∫
v

ϕ �∇ρ∗ dDr. (3.3)

The first equality may also serve as a definition of the force: it says that the force is the sum
of forces on the elements of the body, each given by −ρ∗ �∇ϕ dDr . But, unlike the linear
case, here ϕ cannot be taken as that due to the rest of the system (excluding the body from
the sources). In the linear case, but not here, the potential can be written as the sum of the
contribution of the body and of the rest of the system. Since a body does not exert a force on
itself (this is also true in the nonlinear case, see below) the contribution of the self-field drops
from the expression for the force.

A third way, perhaps the most useful, of writing the force uses equation (2.10)
(ρ∗ �∇ϕ = �∇ · P↔) and expression (2.9) for P↔ to get

F v = −
∫
σ

P↔ · ds = a2
0

2αDG

[∫
σ

F ds −
∫
σ

2FF̂| �∇ϕ|−2 �∇ϕ �∇ϕ · ds

]
. (3.4)

The integration is done over any closed surface, σ , that surrounds the body and excludes all
other sources and bodies (compare with the expression of the force as a surface integral in [3]).
This expression has the advantage that it does not require the effective charge distribution of
the body and employs only the field outside the body.

The surface integral in equation (3.4) vanishes automatically for the surface at infinity in
theories with β0 � D− 2, so that the total force on a whole system vanishes, as expected from
translational invariance. In other theories (e.g. in one dimension—see below) the boundary
conditions for an isolated body must ensure this.

For nonlinear dielectrics, diamagnetics, etc the above definition of the force coincides with
the usual expression for the electromagnetic force. In the flow problem F v is the mechanical
force acting on a region containing sources (ρ replaced by s) because the integral in expression
(3.3) (

∫
su) is the rate at which the sources in the volume impart momentum to the flow. For a

rigid obstacle standing in the flow, expression (3.4) gives the mechanical force the flow exerts
on the obstacle because the second integral vanishes as �∇ϕ · ds vanishes on the surface (the
flow is parallel to the surface) and we are left with F v = − ∫

p ds. The same is true for a
type I superconducting body in a nonlinear magnetized medium: due to the Meissner effect
�∇ϕ · ds = 0 on the surface of the body.

In the volume-minimization problem, F is the actual lateral force (in the x1, . . . , xD
plane) on the volume in question due to uneven tension.

In the case of non-equilibrium, stationary transport problems, such as nonlinear diffusion,
the action functional is not an energy, and F is not a force, but measures the gradient in the
entropy-generation rate when sources are translated.

3.1. A body in an external field—extension of the d’Alembert paradox

We saw that when �∇ϕ vanishes at infinity the total force on any bound system vanishes. When
we have �∇ϕ → −g0 at infinity, describing a constant external field in which the system is
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immersed, it can be shown that even in the nonlinear case the force on the whole system
is Qg0, where Q is the total charge. This can be seen by using the asymptotic form of the
field given below equation (2.24) in expression (3.4) for F on a surface going to infinity.
In the linear case this result is trivial since the total force is the sum of the total mutual
forces of the charges, which vanishes, and the sum of the external forces

∫
ρg0 dDr = Qg0.

It follows from this, for example, that the force on an arbitrary µ inclusion in a constant
external field vanishes since, as we saw above, its total effective charge vanishes. The
application of this result to the compressible flow problem constitutes a generalization
of the well-known d’Alembert paradox in fluid mechanics to the effect that a single,
static obstacle in a non-viscous, incompressible, potential flow that is uniform at infinity
is subject to no force. We now see, more generally, that the paradox applies as well
to the nonlinear (compressible but subsonic) case and to any single body made of
fluid sources (or sinks), rigid obstacles, regions where body forces apply or any other
configuration that can be replaced by an effective charge distribution with vanishing
total charge.

3.2. Point bodies

When a body is very small compared with the typical scale of the system we can approximate
it by a point charge (PC) q at position r0, with density ρ(r) = qδD(r − r0). We may view
the body as the limit of some finite-size charge

ρ(r) = q lim
λ→0

λ−Dρ̂(r/λ) (3.5)

where ρ̂ is some smooth, finite charge distribution normalized to
∫
ρ̂(R) dDR = 1. Not all

problems admit PCs. Applying Gauss’s theorem to equation (1.1) we see that wµ(w) diverges
as r−(D−1) near a PC, so that such charges are not admitted in theories with wµ(w) bound
from above. This is the case for the volume-minimization problem, where wµ(w) < 1. It is
also the case in the flow problem with c2 > 0, where subsonicity, and hence ellipticity, are lost
near a point source. For ‘flow’ problems with c2 < 0, ellipticity is maintained at all values of
�∇ϕ, and point sources are not objectionable.

The concept of a PC is useful only if the field everywhere in a system containing a PC is
independent of the particular choice of the structure function ρ̂ of the PC, so that it enters only
through its total charge. I was not able to prove that this always holds. One possible route for
proving this is to show that an infinitesimal change δρ̂ in the structure function, which does
not change the total charge,

∫
δρ̂(r) dDr = 0, produces an everywhere-vanishing increment

in the potential. The potential increment ζ is a solution of the linear equation (2.13) (where
the background field depends on λ) with δρ = λ−Dδρ̂(r/λ), in the limit λ → 0. In this
limit all the moments of δρ vanish, which might tell us that ζ vanishes: start with the charge
distribution ρλλ′ = λ−Dρ̂(r/λ)+λ′−Dδρ̂(r/λ′) in place of the point PC. Let ϕλ be the solution
of the problem for δρ = 0, and ϕλ + ζλλ′ the solution for ρλλ′ . In the limit λ → 0, ϕλ goes to
the solution for the PC having ρ̂ as a structure function. In the limit λ = λ′ → 0, ϕλ + ζλλ′

goes to the required solution for a PC with structure function ρ̂ + δρ̂. We want to show that in
this last limit ζλλ′ → 0. Instead of going to the limit λ = λ′ = 0 along the λ = λ′ line we first
take the limit λ′ → 0 for finite λ and then take the limit λ → 0. ζλλ′ solves equation (2.13)
with the left-hand side depending on λ, and the right-hand side source being λ′−Dδρ̂(r/λ′).
As all the moments of this source vanish in the limit λ′ → 0, I conclude that ζλλ′ → 0 in the
limit. Now taking the limit λ → 0 we are left with ζ = 0 in the limit. The remaining loophole
concerns the equality of the two limits.
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Be this as it may, the results concerning PCs are only valid when the field does not
depend on the structure function. Employing the expression for the force as a surface integral
(equation (3.4)) we see that the force on a PC is then also independent of the choice of ρ̂.

Zero-size bodies with higher multipoles can, of course, also be constructed by considering
a multiple limit with point charges of infinite charges at zero distances. Such bodies with pure
multipole charge distribution do not have the special role they have in the linear case. They do
not, in general, produce unique-multipole fields, and, unlike the pure-charge case, the force
on them depends on the details of their structure, not only on the components of the multipole.

3.3. Test bodies

Consider a subsystem of charge distribution ρB . In the limit ρB → 0 it can be considered as
a test body: its contribution to the full potential can be neglected in expression (3.3) for the
force on itself, and we have F = − ∫

ρB �∇ϕ̂, where ϕ̂ is the potential determined by the rest
of the system. A point charge has an infinite density. However, it may still be considered a
test charge (the force on which F = −q �∇ϕ̂) provided q is small enough that a surface can
be drawn around it such that (1) the surface is small compared with the scale over which the
field varies appreciably, (2) it is far enough from the charge that the latter’s contribution on
the surface is small compared with the field due to the rest of the system alone (which is then
approximately constant on the surface).

3.4. Attraction or repulsion

I now show that it is still correct in the nonlinear case that two equal PCs attract and two
opposite charges repel each other (for G > 0; and vice versa for G < 0). Take, more generally,
two finite, disjoint bodies with charge distributions that are the mirror images of each other
about some (D − 1)-dimensional hyperplane. The force on each can be calculated by taking
the symmetry hyperplane as the integration surface in equation (3.4) (the integration on the
hemisphere at infinity vanishes with our choice F(0) = 0). Since ϕ is symmetric about the
hyperplane, �∇ϕ is in the plane. We thus get from equation (3.4)

F v = a2
0

2αDG

∫
σ

F ds (3.6)

which is attractive for G > 0. If one body is the negative-charge reflection of the other, ϕ is
antisymmetric, and �∇ϕ is perpendicular to the hyperplane so that P↔ · ds ∝ F(1 − 2F̂) ds, and
from equation (3.4)

F v = a2
0

2αDG

∫
σ

F(1 − 2F̂) ds (3.7)

which is repulsive for G > 0 since F̂ > 1/2 when �∇ϕ �= 0.
Consider, more generally, two disjoint bodies Bi defined by charge distributions ρi > 0

in the non-overlapping volumes vi , i = 1, 2. It is meaningful to ask whether they attract or
repel each other only if they can be separated by some (D − 1)-dimensional hyperplane. We
have attraction if the force on B1 crosses any such separating hyperplane from the side of B1

to that of B2 (see figure 1). I conjecture without a general proof that indeed this is always
the case, and that if the two bodies are oppositely charged, i.e. if, say, ρ2 < 0, they always
repel each other. (The sign of the charge within each body must be uniform.) It follows from
the result proved in appendix C that the conjecture holds when one of the bodies, say B1, is
spherically symmetric with a density profile decreasing from the centre out (I thank Shoshana
Kamin for discussions leading to this proof). In fact, in this case the statement is stronger: for
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Figure 1. The force F on body 1 crosses every separating plane from the side of 1 to the side of 2.
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Figure 2. The setup for demonstrating attraction of like charges when one of the bodies is spherical
with a decreasing density profile.

any hyperplane H ∗ through the centre of B1 with B2 wholly to its one side (side 2), the force
on B1 points from side 1 to side 2 (see figure 2).

We learn from the above result that the force on a spherical body with a decreasing density
profile is always within the convex closure of the cone defined by its centre and the other body
(the envelope of all the planes through the point that are tangent to the body).

Because a PC may be considered as the limit of such a spherical body, we deduce that the
force on a PC in the presence of an extended body of uniform-sign charge is always within
the cone from the point to the convex closure of the body. In particular, two PCs of the same
sign always attract each other.

All the above generalizes, mutatis mutandis, to oppositely charged bodies.
The two-body case may be generalized to a push–pull conjecture concerning three bodies

(as in figure 3) with ρ1, ρ2 > 0, ρ3 < 0: for every two parallel hyperplanes separating the
three bodies the force F acting on B1 crosses the planes into the side of B1. This seems to
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Figure 3. A configuration depicting the push–pull conjecture: for any pair of parallel separating
planes the force F on B1 crosses the planes into side 2.

be a good way to summarize the concept of attraction–repulsion of bodies with constant-sign
charges as all else regarding the question follows from it.

I have not been able to prove this push–pull conjecture in all generality. It is proved in
appendix C when body 1 is spherically symmetric with radially decreasing density; so, in
particular, the conjecture holds when B1 is a point charge. The conjecture is also proved in the
one-dimensional case (see below). It also holds, generally, when body 1 is a collection of test
charges. It then follows from the comparison principle discussed in appendix B. In this case
the force on body 1 is F = − ∫

1 ρ
�∇ϕ12, where ϕ12 is the potential produced by bodies 2 and

3 alone. The comparison principle tells us that on any plane separating these bodies, −�∇ϕ12

crosses from the side of 3 to that of 2 so F 1 does so as well. Similarly, the conjecture holds
when bodies 2 and 3 are made of test particles. The force on body 1 can then be written as
F = ∫

12 ρ
�∇ϕ1, where the integration is performed over bodies 1 and 2, and ϕ1 is produced

by body 1 alone. By the corollary of the comparison principle, �∇ϕ1 crosses from the side of
3 to that of 2 in the volume of body 2, and the opposite in the volume of body 3. Thus, the
integrand, and hence F , crosses from 3 to 2.

Take a system containing charges of a uniform sign, say ρ > 0, with . a convex surface
surrounding all the charges. It follows that on ., �∇ϕ points outwards (inwards when ρ < 0).
So, for example, in theories where µ � 1 we have for the total charge, Q, the inequality
Q = (αDG)−1

∫
.
µ �∇ϕ · ds � (αDG)−1

∫
.

�∇ϕ · ds ≡ Q∗ where Q∗ is the charge that would
be deduced from the field �∇ϕ in a linear theory.

3.5. Forces in the one-dimensional case

The one-dimensional case can be solved in closed form once the boundary conditions are fixed.
If we require that �∇ϕ(∞) = −�∇ϕ(−∞) so as to nullify the force on an isolated system, then
�∇ϕ → const at ∞. The force, F , on an arbitrarily charged body of total charge q, in the
presence of a charge distribution that does not overlap with it, depends only on q and on the
difference, Q, between the total charges to the right and to the left of the body.

F = F(q,Q) = a2
0

8G
[χ(w+) − χ(w−)] (3.8)
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where χ(w) is defined in equation (2.4), and

w± = s(G)ν−1

( |G|
2a0

|q ± Q|
)

(3.9)

with ν(w) ≡ wµ(w).
We see that F is invariant under translations of the body, as long as it does not cross other

charges, and that

F(−q,Q) = −F(q,Q) = F(q,−Q) F(Q, q) = F(q,Q). (3.10)

These are peculiarities of the one-dimensional case. In higher dimensions the magnitude of
the force on a charge does not, in general, remain invariant when the sign of the charge is
reversed (all others kept intact).

Since χ ′ > 0 for w > 0, χ increases everywhere. Thus, F does not vanish unless
w+ = w−, i.e. unless q = 0, or Q = 0. The push–pull conjecture holds here as is easily seen.

4. Forces on point charges

4.1. The limit of a very large point charge

Consider a charge distribution ρ and a PC q that does not overlap with it. Assume also that q
is much larger than any partial charge that makes up ρ (i.e.

∫
v
ρ dDr � q for any volume v).

We can then consider ρ to be a collection of test charges relative to q. From momentum
conservation, the force F q(R) acting on q at position R is opposite the force F ρ acting on the
distribution ρ. This latter is given in the test-particles limit by F ρ = − ∫

dDrρ(r) �∇ϕq , where
ϕq is the field produced by q alone, which is obtained in a straightforward manner through
Gauss’s theorem to give

F q(R) = s(qG)a0

∫
dDrρ(r)ν−1

( |qG|
a0|r − R|D−1

)
r − R

|r − R| (4.1)

with ν(w) ≡ wµ(w). This force is derivable from an effective potential Eq

Eq(R) =
∫

dDrρ(r)Gq(|r − R|) (4.2)

where the effective Green’s function, Gq , satisfies

�∇rGq(r) = s(qG)a0ν
−1(z)n (4.3)

with z ≡ |qG|/a0|r|D−1, and n = r
|r| .

The effective potential is then a linear functional of the density ρ. It satisfies the Poisson
equation

9Eq(R) =
∫

dDrρ(r)9Gq(|r − R|) (4.4)

with

9Gq(r) = s(qG)(D − 1)a0|r|−1 wµ̂(w)

1 + µ̂(w)
(4.5)

where w = ν−1(z).
The above results also apply to any finite spherical body of very large total charge, and are

extended in a straightforward manner to the case of an arbitrary body whose ϕ field is known.
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4.2. The two-body force

For two PCs |q1| � |q2|, a distance : apart, the vanishing of the total force and moment tells
us that the forces on the two charges are opposite to each other, and lie along the connecting
line; write its magnitude f (q1, q2, :). We have seen above that f has the sign of Gq1q2

(f is positive for attraction). Because : is the only length scale, we can reduce the number of
variables to two independent, dimensionless variables constructed from q1, q2, :, and a0; for
example, −1 � η ≡ q1/q2 � 1 and z ≡ |Gq2|/a0:

D−1. Since a0q1 has dimensions of force,
we can write, for example

f = s(Gq2)a0q1f̂ (η, z). (4.6)

Our earlier discussion implies some constraints on f̂ . For instance, when one charge is
much smaller than the other |η| � 1, the test-charge result tells us that

f̂ (|η| � 1, z) = ν−1(z) (4.7)

to lowest order in η [z = ν(w) = wµ(w)].
For a power-law medium with µ(w) = wβ one deduces from scaling properties of the

field equation that the :-dependence of the force is :−γ (D−1), where γ = 1/(1 + β). So here

f̂ = ζ(η)zγ . (4.8)

From equation (4.7) ζ(0) = 1. Since, in general, ζ(−1) �= ζ(1), the forces for equal and for
opposite charges are not of the same magnitude, in contradistinction with the linear case. For
the special case β = D − 2, the two-body force was found in closed form [8]

f (q1, q2, :) = s(G)
1

:
d−1

∣∣Ga
β

0

∣∣d−1
(∣∣q1 + q2

∣∣d − ∣∣q1

∣∣d − ∣∣q2

∣∣d) (4.9)

[d ≡ D/(D−1) = 1+γ ]. (The forces in a three-point-chargesystem of zero total charge were
also derived in [8].) For two equal charges q1 = q2 = q , f = 2s(G):−1d−1|Ĝ|d−1|q|d(2d−1 −
1), whereas for opposite charges: q1 = −q2 = q , f = −2s(G):−1d−1|Ĝ|d−1|q|d . The two
are equal in magnitude only in the (linear) two-dimensional case. Interestingly, in the limit
of a large dimension, where d → 1, the two-body force for two charges of the same sign
vanishes as D−1 [from equation (4.9)], whereas the force for opposite charges does not. This
can be generalized: for a given configuration of N point charges of the same sign the force on
each becomes smaller as D−1 in the limit of large D (also letting the theory’s power increase,
β = D − 2).

5. Some examples of applications

I next discuss a number of potential applications, some of which I alluded to earlier. I
concentrate on two of the physical problems listed in the introduction: stationary (potential)
flows of barotropic compressible fluids and media with field-dependent dielectric, or
diamagnetic, constants.

Regarding the flow problem, we saw that the d’Alembert paradox can be extended to the
compressible case. So, the force acting on a body of total effective charge in a flow of constant
asymptotic speed vanishes. This implies the vanishing of the force on a body of rigid walls
standing in such flow, on a system made of sinks and sources with vanishing total out-flux.
If the fluid is electrically charged—weakly, so that the fluid does not self-interact—then the
flow is modified by the presence of a region with an electric field. The effect of such a region
can be described by an effective sink–source distribution whose total out-flux vanishes. So,
the net force on such a region due to the fluid motion vanishes. We also learned from the
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discussion of the sign of the forces that in such flows two sinks, or two sources, always attract
each other whereas a source and a sink repel each other.

For the nonlinear dielectric, the generalized d’Alembert paradox says that, as in the linear
case, the force on an arbitrary charge distribution, ei, of vanishing net charge in a constant
external field, �E, vanishes, even though the force on an individual component of charge is
not ei �E. From this we learn that, for example, the force on a dielectric inclusion, or an
equipotential body of zero net charge, vanishes in a constant external field. We also deduce
that the force vanishes on a superconducting inclusion in a nonlinear magnetic medium in a
constant magnetic field.
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Appendix A. Integral relations

We employ the technique described in [10] to derive certain useful virial relations directly
from the action by substituting in equation (2.15) for δS various choices of δϕ. If either
β0 < D − 2, or β0 = D − 2 and Q = 0, the potential vanishes at infinity. We can then obtain
one relation by taking δϕ = εϕ, with ε infinitesimal. The vanishing of ϕ at infinity leads to
the vanishing of δS. But δS can also be calculated directly to yield a virial relation∫

V

ρϕ dDr +
1

αDG

∫
V

( �∇ϕ)2µ(| �∇ϕ|/a0) dDr = 0. (A.1)

(This can also be derived by multiplying ϕ by the expression for ρ from the field equation and
integrating by parts.)

In the above relation (and below) ρ should be understood to include true sources as well
as all the effective sources replacing boundary conditions on closed surfaces in the system.

Another useful relation, satisfied by solutions of the field equation, may be obtained by
considering variations of S produced by dilations of space coordinates: ϕ(r) → ϕ(λr). For
an infinitesimal dilation λ = 1 + ε, we have δϕ = εr · �∇ϕ. Now, δS can also be calculated
directly by substituting ϕ(r) → ϕ(λr) in S; then taking the derivative with respect to λ at
λ = 1 to obtain for the finite volume(

dS

dλ

)
λ=1

= −
∫
V

ρr · �∇ϕ dDr +
a2

0

2αDG

∫
V

[
DF − 2

( �∇ϕ)2

a2
0

µ

]
dDr − a2

0

2αDG

∫
.

Fr · ds.

(A.2)

So, comparing with expression (2.15) for the variation, we get an expression for the virial V
in the volume V .

V ≡
∫
V

ρr · �∇ϕ dDr = a2
0

2αDG

∫
V

F(D − 2F̂) dDr +
∫
.

r · P↔ · ds. (A.3)

This can also be obtained by substituting in the definition of V the expression for ρ from the
field equation and integration by parts. The value of V is independent of the choice of origin
due to momentum conservation.

Taking the surface to infinity, the surface term in equation (A.3) can be evaluated. At this
point I restrict myself to D � 2; the one-dimensional case is exactly solvable and is treated
below. For β0 < D − 2 the surface integral vanishes at infinity, and

V = a2
0

2αDG

∫
F(D − 2F̂) dDr. (A.4)
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For β0 = D − 2 the surface integral at infinity converges to yield

V = a2
0

2αDG

∫
F(D − 2F̂) dDr + d−1Ĝ−1|ĜQ|d (A.5)

where d ≡ D/(D − 1), and Ĝ ≡ Ga
β0
0 . The conformally invariant theories discussed in [8]

have F̂ = D/2 and so V = d−1Ĝ−1|ĜQ|d . This has been put to extensive use in [8].
Another integral of interest is

�U ≡
∫
V

ρ

[
r(r · �∇ϕ) − 1

2
r2 �∇ϕ

]
dDr. (A.6)

By substituting ρ from the field equation and integrating by parts we arrive at the expression

�U = a2
0

2αDG

∫
V

F(D − 2F̂)r dDr

− a2
0

4αDG

∫
.

Fr2{(1 − 2n ⊗ n) + F̂ [4(n · e)n ⊗ e − 2e ⊗ e]} · ds (A.7)

where n = r/|r| and e = �∇ϕ/| �∇ϕ|.
Note that �U depends, in general, on the choice of origin. Using the vanishing of the total

force and total moment we see that if the origin is shifted by −a, �U is changed by Va.

Appendix B. The comparison principle and some consequences

First I show that if ϕ1, ϕ2 are continuous functions that solve our equation for densities ρ1 � ρ2

in a volume V of boundary ., and ϕ1 � ϕ2 on ., then ϕ1 � ϕ2 everywhere in V . This is
known as a comparison principle for the solution of elliptic equations (e.g. [5]). I give here
a proof that applies specifically to the form of our equation and is thus more elementary than
the proofs found in the literature. Start with the identity∫
v

(ϕ1 − ϕ2)(ρ1 − ρ2) dDr ∝
∫
v

(ϕ1 − ϕ2) �∇ · (µ1 �∇ϕ1 − µ2 �∇ϕ2) dDr (B.1)

=
∫
σ

(ϕ1 − ϕ2)(µ1 �∇ϕ1 − µ2 �∇ϕ2) · ds −
∫
v

( �∇ϕ1 − �∇ϕ2) · (µ1 �∇ϕ1 − µ2 �∇ϕ2) dDr (B.2)

(where µi = µ(| �∇ϕi |)), obtained by using the expression for ρi from the field equation,
Gauss’s theorem and integration by parts. I want to show that the region v in V , in which
ϕ1 > ϕ2, is empty. If there is even one point where ϕ1 > ϕ2, then, by continuity of ϕ1 − ϕ2,
v must contain a whole (nonzero-measure) neighbourhood. Apply identity (B.2) to this
volume v. On its boundary σ we have ϕ1 = ϕ2 (from continuity of ϕi), whether σ overlaps
with ., or is completely interior to V . Thus the first term on the right-hand side of (B.2)
vanishes. It can be shown (see [9]) that, in light of the ellipticity condition, the integrand in
the second term is non-negative and vanishes only where �∇ϕ1 = �∇ϕ2. This is because when
wµ(w) is non-decreasing (a − b) · [µ(|a|)a − µ(|b|)b] � 0 for any two vectors a, b, and
vanishes only for a = b. However, by the assumptions, the left-hand side is non-negative and
so the right-hand side must vanish, and hence �∇ϕ1 = �∇ϕ2 in v. Thus, ϕ1 − ϕ2 is constant in
the whole region where it is positive. This, however, contradicts the assumption that ϕ1 � ϕ2

on . with the continuity of the potentials.
I now apply the theorem to the following useful configuration. Let ϕ(x1, . . . , xD)

be the solution for a source distribution that satisfies ρ(x1, . . . , xD) � ρ(−x1, . . . , xD).
The boundary condition at infinity is ϕ(r) → s(r). Observe the two halves of the
solution in the two half-spaces separated by the x1 = 0 hyperplane (H ∗) as two solutions
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of the field equation in a half-space x1 � 0; so, ϕ1(x1, . . . , xD) ≡ ϕ(x1, g . . . , xD), and
ϕ2(x1, . . . , xD) ≡ ϕ(−x1, . . . , xD). We have ϕ2(0, x2, . . . , xD) = ϕ1(0, x2, . . . , xD). So,
ϕ1 and ϕ2 are solutions with the same boundary values (they also have the same boundary
condition at ∞). The comparison principle then tells us thatϕ1(x1, . . . , xD) � ϕ2(x1, . . . , xD),
or ϕ(x1, . . . , xD) � ϕ(−x1, . . . , xD). In particular, ∂ϕ

∂x1
(x1 = 0) � 0. H ∗ can be any plane

separating a source distribution ρ1 � 0 from ρ2 � 0.
Let ρ > 0 in a volume v be the whole source distribution, and A its convex closure (A is

the smallest convex volume containing all the points where ρ �= 0). Then the gradient of the
potential at any point r outside A points away from A (because it points away from the side
of A on any plane separating r from A).

We can deduce from this that for a system of two PCs of the same sign the tangent to
the field lines always crosses the line connecting the charges between the two. For oppositely
charged points the tangent crosses outside this line segment. This generalizes the usual
situation familiar from the linear case where it follows simply from the vector addition of the
two forces due to the PCs.

Appendix C. Proof of the push–pull conjecture for a spherical body

Consider a system of three disjoint bodies: B1, which is spherically symmetric with ρ1 > 0
decreasing from the centre out; B2 with ρ2 > 0; and B3 with ρ3 < 0. H ∗ is a plane through the
centre of B1 that separates B2 from B3. I show that the force F on B1 crosses H ∗ from side 3
to side 2. The push–pull conjecture for this special case is a weaker statement and follows as
a corollary.

Choose the coordinates such that H ∗ is the x1 = 0 plane, with B2 on the x1 < 0 side.
We then have from the previous appendix that ϕ(−x1, . . . , xD) � ϕ(x1, . . . , xD) for x1 > 0.
Using the second expression in equation (3.3) to calculate the x1 component of the force on
B1, and employing the symmetry of the latter, we have

F 1 =
∫
x1>0

dDr[ϕ(x1, . . . , xD) − ϕ(−x1, . . . , xD)]∂x1ρ � 0 (C.1)

where use was made of the fact that ∂x1ρ � 0 for x1 > 0, as ρ monotonically decreases with
radius.
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